Data Structures and Algorithm Analysis

16

Dr. Syed Asim Jalal
Department of Computer Science
University of Peshawar

Solving Recurrence Using Merge-Sort as an Example

Recursion Tree Method

- We can describe any recurrence in terms of a tree, where each expansion of the recurrence takes us one level deeper in the tree.
■ We can then sum running time at each level.

Sample/Example only

Sample/Example only

Recursion Tree Method

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n=1, \\ 2 T(n / 2)+\Theta(n) & \text { if } n>1 .\end{cases}
$$

■ As we derived earlier
> Time to combine solutions be $\underline{C(n)}$
> In divide and conquer, 'a' sub-problems takes $a T(n / b)$ time. For merge Sort $\mathrm{a}=2$ and $\mathrm{b}=2$, therefore, Solving sub-problems takes $2 T(n / 2)$
$>c$ is the constant time to solve base case in merge sort

- For the original problem, we have a cost of cn, plus the two sub-problems, each costing $T(n / 2)$:

- For each of the size-n/2 subproblems, we have a cost of $c n / 2$, plus two subproblems, each costing $T(n / 4)$:

- Continue expanding until the problem sizes qet down to 1:

Total: $c n \lg n+c n$

Basic concept is to find the costs involved at each level and add them all.

- Each level has cost cn.
$>$ The top level has cost cn.
$>$ The next level down has 2 sub-problems, each contributing cost $c n / 2$.
$>$ The next level has 4 sub-problems, each contributing cost cn/4.
$>$ Each time we go down one level, the number of subproblems doubles but the cost per sub-problem halves
>However total cost per each level stays the same.
- If we observe the pattern, we see that there are $\log n+1$ levels (height is $\log n$).
\square Total cost is
$(\log \mathbf{n + 1}) * c n=c n \log n+c n$
- Ignoring c's and lower order terms, we get nlog(n)
- So the running time of MERGE SORT is $>\Theta(n \log n)$

The Master Method

The Master Method

■ It is a "cookbook" for the solving many divide-and-conquer recurrences of the form

$$
\begin{aligned}
& T(n)=\left\{\begin{array}{l}
\Theta(1) \\
a T(n / b)+f(n),
\end{array}\right. \\
& \text { where } a \geq 1, b>1, \text { and } f(n)>0
\end{aligned}
$$

- $f(n)$ is $D(n)+C(n)$ as given in the figure below.
$T(n)=\left\{\begin{array}{l}\Theta(1) \\ a T(n / b)+\overline{D(n)+C(n)}\end{array}\right.$

Example of $f(n)$ in merge sort

- Recurrence relation of merge sort is

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ 2 T(n / 2)+\Theta(n) & \text { if } n>1\end{cases}
$$

■ $f(n)=n$, because in merge sort $D(n)+C(n)=\Theta(n)$,
\Rightarrow Also in merge sort $a=2, b=2$

Master Method: Three cases

■ Master Method has three cases
> You have to check which case your recurrence relation falls in and then apply the corresponding solution.
$>$ For Master Method, you need knowledge of asymptotic notations (Θ, O, Ω) and \log.

Master Method: Case 1

■ If
$f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$.

■ Then

$$
T(n)=\Theta\left(n^{\log _{b} a}\right)
$$

Example of Case 1:

- Suppose, we have:

$$
\begin{aligned}
& T(n)=9 T(n / 3)+n . \\
& >\text { i.e. } \quad a=9, b=3, f(n)=n
\end{aligned}
$$

> Then check if

$$
\begin{aligned}
& >f(n)=O\left(n^{\log _{3} 9-\varepsilon}\right) \text { ? } \\
& \Rightarrow n=O\left(n^{2-\varepsilon}\right), \text { as } \log _{3} 9=2 \\
& \quad \rightarrow \text { for } \varepsilon=1, n=O(n), \text { which is true }
\end{aligned}
$$

Therefore, according to Case 1 the solution is $\mathrm{T}=\Theta\left(\mathbf{n}^{2}\right)$

Master Method: Case 2

■ If

$$
f(n)=\Theta\left(n^{\log _{b} a}\right)
$$

■ Then

$$
T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)
$$

Example of Case 2 (Merge Sort case)

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n=1, \\ 2 T(n / 2)+\Theta(n) & \text { if } n>1\end{cases}
$$

■ For case 2 example, we consider MergeSort where we have, $T(n)=2 T(n / 2)+n$

$$
\text { i.e. } a=2, b=2, f(n)=n
$$

Now check if

$$
f(n)=\Theta\left(n^{\left.\log _{2} 2\right)}\right.
$$

$\rightarrow \mathbf{n}=\Theta(\mathbf{n})$, which is true $\mathbf{c}_{1}=1 / 2, c_{2}=2, n_{0}=\mathbf{1}$

- Therefore according to case 2 the solution is:

$$
T(n)=\Theta(n \operatorname{logn})
$$

Master Method: Case 3

- If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$ and $f(n)$ satisfies the regularity condition $a f(n / b) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n.
- Then

$$
T(n)=\Theta(f(n))
$$

Regularity condition always holds whenever $f(n)=n^{k}$

Example: Case3

- $T(n)=4 T(n / 2)+n^{3}$.
$\Rightarrow \mathrm{a}=4, \mathrm{~b}=2, \mathrm{f}(\mathrm{n})=\mathrm{n}^{3}$
- Here, check the following 2 things:

1. Regularity condition holds if

$$
a f(n / b) \leq c f(n)
$$

2. if $n^{3}=\Omega\left(n^{\log _{2} 4+\varepsilon}\right)$

$$
T(n)=4 T\left(\frac{n}{2}\right)+n^{3}
$$

Here $a=4, b=2, f(n)=n^{3}$
first lets check if

$$
\begin{aligned}
& f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right) \text { for } \epsilon>0 \\
\Rightarrow & n^{3}=\Omega\left(n^{\log _{2} 4+\epsilon}\right) \\
\Rightarrow & n^{3}=\Omega\left(n^{2+\epsilon}\right) \\
& \text { Now, if we take } \epsilon=1 \\
\Rightarrow & n^{3}=\Omega\left(n^{2+1}\right) \\
\Rightarrow & n^{3}=\Omega\left(n^{3}\right) \text {, which is true. }
\end{aligned}
$$

Now, lets check regularity condition.
ie $\quad a f\left(\frac{n}{b}\right) \leq c f(n)$ for $c<1$

$$
\begin{aligned}
& \Rightarrow 4\left(\frac{n}{2}\right)^{3} \leq c n^{3} \\
& \Rightarrow 4 \frac{n^{3}}{8} \leq c n^{3} \\
& \Rightarrow \frac{n^{3}}{2} \leq c n^{3} \quad \text { it is TRUE } \quad c=\frac{1}{2}
\end{aligned}
$$

Both checks satisfied, therefore Solution is

$$
\begin{aligned}
& T(n)=\theta(f(n)) \\
\Rightarrow & T(n)=\theta\left(n^{3}\right)
\end{aligned}
$$

Iteration Method???

Basics: Expand terms and look for pattern

$$
\begin{aligned}
& \mathrm{T}(\mathrm{n})= \begin{cases}1 & \text { if } \mathrm{n}=1 \\
\mathrm{~T}(\lceil\mathrm{n} / 2\rceil)+\mathrm{T}(\lfloor\mathrm{n} / 2\rfloor)+\mathrm{n} & \text { otherwise }\end{cases} \\
& \mathrm{T}(1)=1 \\
& \mathrm{~T}(2)=\mathrm{T}(1)+\mathrm{T}(1)+2=1+1+2=4 \\
& \mathrm{~T}(3)=\mathrm{T}(2)+\mathrm{T}(1)+3=4+1+3=8 \\
& \mathrm{~T}(4)=\mathrm{T}(2)+\mathrm{T}(2)+4=4+4+4=12 \\
& \mathrm{~T}(5)=\mathrm{T}(3)+\mathrm{T}(2)+5=8+4+5=17
\end{aligned}
$$

$$
T(8)=T(4)+T(4)+8=12+12+8=32
$$

$$
T(16)=T(8)+T(8)+16=32+32+16=80
$$

What is the pattern here?

$\mathrm{T}(1)$	1
$\mathrm{~T}(2)$	4
$\mathrm{~T}(4)$	12
$\mathrm{~T}(8)$	32
$\mathrm{~T}(16)$	80

- To understand the pattern, let's consider the ratios $T(n) / n$ for powers of 2 :

$\mathrm{T}(1) / 1$	1	$0+1$	$\log (1)+1$
$\mathrm{~T}(2) / 2$	2	$1+1$	$\log (2)+1$
$\mathrm{~T}(4) / 4$	3	$2+1$	$\log (4)+1$
$\mathrm{~T}(8) / 8$	4	$3+1$	$\log (8)+1$
$\mathrm{~T}(16) / 16$	5	$4+1$	$\log (16)+1$
$\mathrm{~T}(\mathrm{n}) / \mathrm{n}$			$\log (\mathrm{n})+1$

- This suggests, $T(n)=(\log n+1) * n$, or $T(n)=n \log n+n$
which is
$T(n)=\Theta(n \log n)$

Another way!!!

- The iteration method turns the recurrence into a summation. Let's expand the recurrence:

$$
\begin{aligned}
T(n) & =2 T(n / 2)+n \\
& =2(2 T(n / 4)+n / 2)+n \\
& =4 T(n / 4)+n+n \\
& =4(2 T(n / 8)+n / 4)+n+n \\
& =8 T(n / 8)+n+n+n \\
& =8(2 T(n / 16)+n / 8)+n+n+n \\
& =16 T(n / 16)+n+n+n+n
\end{aligned}
$$

The pattern is: $\quad \mathbf{T}(\mathbf{n})=2^{\mathbf{x}} \mathbf{T}\left(\mathbf{n} / 2^{\mathrm{x})}+\mathbf{x}^{*} \mathbf{n}\right.$
Now, let ' n ' is some power of 2, i.e. $n=2^{k}$, we get

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =2^{k} \mathrm{~T}\left(\mathrm{n} / 2^{k}\right)+k^{*} \mathrm{n} \\
\Rightarrow \mathrm{~T}(\mathrm{n}) & =2^{k} \mathrm{~T}\left(\mathrm{n} / \mathrm{n}^{)}+k^{*} \mathrm{n}\right. \\
\Rightarrow \mathrm{T}(\mathrm{n}) & =2^{k} \mathrm{~T}(1)+k^{*} \mathrm{n} \\
\Rightarrow \mathrm{~T}(\mathrm{n}) & =2^{k}(1)+k^{*} \mathrm{n}
\end{aligned}
$$

$\rightarrow \mathrm{T}(\mathrm{n})=2^{\mathrm{k}}+\mathrm{k} * \mathrm{n}$
$\rightarrow \mathrm{T}(\mathrm{n})=\mathrm{n}+\mathrm{k} * \mathrm{n}$
If $n=2^{k}$, then $k=\log n$
We get,
$\rightarrow \mathrm{T}(\mathrm{n})=\mathrm{n}+\log (\mathrm{n}) * \mathrm{n}$
$\rightarrow \mathrm{T}(\mathrm{n})=\mathrm{n}+\mathrm{n}(\log \mathrm{n})$
or

$$
\mathrm{T}(\mathrm{n})=\Theta(\mathrm{n} \log \mathrm{n})
$$

$$
\begin{aligned}
T(n) & =2 T\left(\frac{n}{2}\right)+n \\
& =2\left(2 T\left(\frac{n}{2}\right)+\frac{n}{2}\right)+n \\
& =2\left(2 T\left(\frac{n}{4}\right)+\frac{n}{2}\right)+n \\
& =4 T\left(\frac{n}{4}\right)+n+n \\
& \left.=4 T\left(\frac{n}{4}\right)+2 n \quad 2^{2} T\left(\frac{n}{2^{2}}\right)+2 n\right) \\
& =4\left(2 T\left(\frac{n}{4}\right)+\frac{n}{4}\right)+2 n \\
& =4\left(2 T\left(\frac{n}{8}\right)+\frac{n}{4}\right)+2 n \\
& =8 T\left(\frac{n}{8}\right)+n+2 n \\
& =8 T\left(\frac{n}{8}\right)+3 n \\
& =8\left(2 T\left(\frac{n}{8}\right)+\frac{n}{8}\right)+3 n . \\
& \left.=16 T\left(\frac{n}{16}\right)+4 n T\left(\frac{n}{2^{3}}\right)+3 n\right) \\
& =2^{4} T\left(\frac{n}{2^{4}}\right)+4 n
\end{aligned}
$$

Now, suppose $n=2^{k}$

$$
T(n)=2^{k}
$$

it is of the form

$$
=2^{x} T\left(\frac{n}{2^{x}}\right)+x n
$$

suppose $n=2^{k}$ then

$$
\begin{aligned}
&=2^{k} T\left(\frac{n}{2^{k}}\right)+k n \\
&=2^{k} T\left(\frac{n}{n}\right)+k n \\
&=2^{k} T(1)+k n \\
&=2^{k}(1)+k n \\
&=2^{k}+k n, \text { as } n=2^{k} \\
&=n+k n, \text { if } n=2^{k} \Rightarrow k=\log n \\
&=n+(\log n) n \\
& T(n)=n+n \log n \\
& \Rightarrow \text { or } \\
& \Rightarrow T(n)=\theta(n \log n) .
\end{aligned}
$$

$$
\Rightarrow T(n)=n+n \log n
$$

