Data Structures and Algorithm Analysis

Dr. Syed Asim Jalal Department of Computer Science University of Peshawar

Solving Recurrence Using Merge-Sort as an Example

Recursion Tree Method

- We can describe any recurrence in terms of a tree, where each expansion of the recurrence takes us one level deeper in the tree.
- We can then sum running time at each level.

Sample/Example only

Sample/Example only

Recursion Tree Method $T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) & \text{if } n > 1. \end{cases}$

As we derived earlier

- > Time to combine solutions be <u>C(n)</u>
- In divide and conquer, 'a' sub-problems takes aT(n/b) time. For merge Sort a =2 and b=2, therefore, Solving sub-problems takes 2T (n/2)
- c is the constant time to solve base case in merge sort

For the original problem, we have a cost of *cn*, plus the two sub-problems, each costing *T* (*n*/2):

For each of the size-n/2 subproblems, we have a cost of cn/2, plus two subproblems, each costing T (n/4):

9

Total: $cn \lg n + cn$

Basic concept is to find the costs involved at each level and add them all.

Each level has cost *Cn*.

- > The top level has cost *cn*.
- The next level down has 2 sub-problems, each contributing cost cn/2.
- The next level has 4 sub-problems, each contributing cost cn/4.
- Each time we go down one level, the number of subproblems doubles but the cost per sub-problem halves
- However total cost per each level stays the same.

If we observe the pattern, we see that there are log n + 1 levels (height is log n).
Total cost is

$(\log n + 1) * cn = cn \log n + cn$

- Ignoring c's and lower order terms, we get nlog(n)
- So the running time of MERGE SORT is > ⊙(n log n)

The Master Method

The Master Method

It is a "cookbook" for the solving many divideand-conquer recurrences of the form

$$T(n) = \begin{cases} \Theta(1) \\ aT(n/b) + f(n) , \end{cases}$$

where $a \ge 1, b > 1$, and $f(n) > 0$.

• f(n) is D(n) + C(n) as given in the figure below.

Example of f(n) in merge sort

Recurrence relation of *merge sort* is

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 ,\\ 2T(n/2) + \Theta(n) & \text{if } n > 1 . \end{cases}$$

f(n) = n, because in merge sort D(n) + C(n) = 𝒫(n),
 ≻ Also in merge sort a = 2, b = 2

Master Method: Three cases

- Master Method has three cases
 - You have to check which case your recurrence relation falls in and then apply the corresponding solution.
 - > For Master Method, you need knowledge of asymptotic notations (Θ, O, Ω) and *Log*.

Master Method: Case 1

$f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$.

If

$$T(n) = \Theta(n^{\log_b a}).$$

Example of Case 1:

Suppose, we have: *T* (*n*) = 9*T* (*n*/3) + *n*.
≻ i.e. a = 9, b = 3, f (n) = n

Therefore, according to Case 1 the solution is $T = \Theta(n^2)$

Asim Jalal

Master Method: Case 2

$f(n) = \Theta(n^{\log_b a})$

If

$T(n) = \Theta(n^{\log_b a} \lg n)$

Example of Case 2 (Merge Sort case) $T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) & \text{if } n > 1. \end{cases}$

For case 2 example, we consider MergeSort where we have, T(n) = 2T(n/2) + n

i.e.
$$a=2, b=2, f(n) = n$$

Now check if

 $f(n) = \Theta(n^{\log_2 2^2}).$

→ n = Θ(n), which is true c₁=1/2, c₂=2, n₀=1
• Therefore according to case 2 the solution is: T(n) = Θ(n logn)

Master Method: Case 3

 If f(n) = Ω(n^{log_b a+ϵ}) for some constant ϵ > 0 and f (n) satisfies the *regularity condition* af (n/b) ≤ cf (n) for some constant c < 1 and all sufficiently large n.
 Then

$$T(n) = \Theta(f(n))$$

Regularity condition always holds whenever $f(n) = n^k$

Example: Case3

• $T(n) = 4T(n/2) + n^3$. • $a=4, b=2, f(n) = n^3$

 Here, check the following 2 things:
 1. Regularity condition holds if
 af (n/b) ≤ cf (n)
 2. if n³ = Ω (n^{log}2^{4 + ε})

 $T(n) = 4T\left(\frac{n}{2}\right) + n^{3}$ $e = a = 4, b = 2, f(n) = n^3$ cheek if $f(n) = \Omega(n^{\log_{b} a + \epsilon})$ for > $n^3 = S2(n^{\log_2 4+6})$ $n^3 = S2(n^{a+6})$ Now, if we take ϵ $n^{3} = \Omega(n^{2+1})$ $-n^3 = \Omega(n^3)$, which

lets check regularity condition $af(n) \leq cf(n)$ for $c \leq$ Now, \leq cn³ $n^3 \leq cn^3$ $\Rightarrow n^3 \leq cn^3$ it is TRUE C=1 Both checks satisfied, therefore solution is T(n) = O(f(n))

Iteration Method???

Basics: Expand terms and look for pattern

$$T(n) = \begin{cases} 1 & \text{if } n = 1, \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + n & \text{otherwise} \end{cases}$$

$$T(1) = 1$$

$$T(2) = T(1) + T(1) + 2 = 1 + 1 + 2 = 4$$

$$T(3) = T(2) + T(1) + 3 = 4 + 1 + 3 = 8$$

$$T(4) = T(2) + T(2) + 4 = 4 + 4 + 4 = 12$$

$$T(5) = T(3) + T(2) + 5 = 8 + 4 + 5 = 17$$

$$T(8) = T(4) + T(4) + 8 = 12 + 12 + 8 = 32$$

T(16) = T(8) + T(8) + 16 = 32 + 32 + 16 = 80

. . .

• / ▲ \

What is the pattern here ?

T(1)	1
T(2)	4
T(4)	12
T(8)	32
T(16)	80

To understand the pattern, let's consider the ratios T(n)/n for powers of 2:

T(1) / 1	1	0 + 1	log(1) + 1
T(2) /2	2	1 + 1	log(2) + 1
T(4) /4	3	2 + 1	log(4) + 1
T(8) / 8	4	3 + 1	log(8) + 1
T(16) / 16	5	4 + 1	log(16) + 1
T(n) / n			log(n) + 1

This suggests, $T(n) = (\log n + 1)*n$, or $T(n) = n \log n + n$ which is $T(n) = \Theta(n \log n)$

Asim Jalal

Design & Analysis of Algorithms

Another way!!!

The iteration method turns the recurrence into a summation. Let's expand the recurrence:

T(n) = 2T(n/2) + n

$$= 2(2T(n/4) + n/2) + n$$

$$= 4T(n/4) + n + n$$

$$= 4(2T(n/8) + n/4) + n + n$$

$$= 8T(n/8) + n + n + n$$

$$= 8(2T(n/16) + n/8) + n + n + n$$

$$= 16T(n/16) + n + n + n + n$$

The pattern is: $T(n) = 2^{x} T(n / 2^{x}) + x * n$ Now, let 'n' is some power of 2, i.e. $n = 2^{k}$, we get $T(n) = 2^{k} T(n / 2^{k}) + k * n$ $\Rightarrow T(n) = 2^{k} T(n / n) + k * n$ $\Rightarrow T(n) = 2^{k} T(1) + k * n$ $\Rightarrow T(n) = 2^{k} (1) + k * n$ → T(n) = 2^k + k * n
→ T(n) = n + k * n
If n = 2^k, then k = log n
We get,
→ T(n) = n + log(n) * n
→ T(n) = n + n(log n)
or

 $T(n) = \Theta(n \log n)$

Now, Suppose n=2k $T(n) = 2^{k}$ it is of the form $= 2^{\chi} T\left(\frac{n}{2^{\chi}}\right) + \chi n$ suppose n=2k then $= 2^{k} T(\frac{N}{2^{k}}) + kn$ - 2KT (M) + KA $= 2^{k} T(1) + kn$ $= 2^{k}(1) + kn$ $= 2^{k} + kn , as n = 2^{k}.$ = n + kn , if n = 2^{k} => k = log n = n+ (logn)n => T(n) = n + nlogn \Rightarrow T(n) = $\Theta(n\log n)$ 29