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Solving Recurrence
Using Merge-Sort as 

an Example
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Recursion Tree Method

 We can describe any recurrence in terms of 
a tree, where each expansion of the 
recurrence takes us one level deeper in the 
tree.

 We can then sum running time at each level.
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Sample/Example only
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Sample/Example only
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Recursion Tree Method

 As we derived earlier
Time to combine solutions be C(n)
 In divide and conquer, ‘a’ sub-problems takes 

aT(n/b) time. For merge Sort a =2 and b=2, 
therefore, Solving sub-problems takes 2T (n/2)

 c is the constant time to solve base case in 
merge sort
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 For the original problem, we have a cost of 
cn, plus the two sub-problems, each 
costing T (n/2):



Design & Analysis of Algorithms 8Asim Jalal

 For each of the size-n/2 subproblems, we 
have a cost of cn/2, plus two subproblems, 
each costing T (n/4):
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 Continue expanding until the problem 
sizes get down to 1:

log(n)+1

(log(n)+1 )   cn



Design & Analysis of Algorithms 10Asim Jalal

Basic concept is to find the costs involved at 
each level and add them all.

 Each level has cost cn.
 The top level has cost cn.
 The next level down has 2 sub-problems, each 

contributing cost cn/2.
 The next level has 4 sub-problems, each contributing 

cost cn/4.
 Each time we go down one level, the number of sub-

problems doubles but the cost per sub-problem halves
However total cost per each level stays the 

same.
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 If we observe the pattern, we see that 
there are log n + 1 levels (height is log n).

 Total cost is 
(log n +1 ) * cn  =  cn log n + cn

 Ignoring c’s and lower order terms, we get 
nlog(n)

 So the running time of MERGE SORT is 
 Θ(n log n)
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The Master Method
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The Master Method

 It is a “cookbook” for the solving many divide-
and-conquer recurrences of the form

 f(n) is D(n) + C(n) as given in the figure below.
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Example of f(n) in merge sort

 Recurrence relation of merge sort is

 f(n) = n, because in merge sort D(n) + C(n) = Θ(n), 
 Also in merge sort a = 2, b = 2
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Master Method: Three cases

 Master Method has three cases

You have to check which case your 
recurrence relation falls in and then apply 
the corresponding solution.

For Master Method, you need knowledge of 
asymptotic notations (Θ,O,Ω) and Log.
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Master Method: Case 1

 If

 Then
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Example of Case 1: 

 Suppose, we have: 
T (n) = 9T (n/3) + n.
 i.e.  a = 9, b = 3, f (n) = n
 Then check if

 f(n)  =  O(nlog39 – ε  )?
 n = O(n2- ε), as log39= 2
 for ε = 1, n = O(n), which is true

Therefore, according to Case 1 the solution is 
T= Θ(n2)
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Master Method: Case 2

 If 

 Then 



Example of Case 2 (Merge Sort case)

 For case 2 example, we consider MergeSort where 
we have, T(n) = 2T(n/2) + n

i.e. a=2, b=2, f(n) = n
 Now check if

f(n)  = Θ(nlog22) .
 n  = Θ(n) , which is true c1=1/2, c2=2, n0=1

• Therefore according to case 2 the solution is: 
T(n) = Θ(n logn)
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Master Method: Case 3

 If
and f (n) satisfies the regularity condition

for some constant c < 1 
and all sufficiently large n.

 Then

Regularity condition  always holds whenever f (n) = nk



 T(n) = 4T(n/2) + n3.
 a=4, b=2, f(n) = n3

 Here, check the following 2 things: 
1. Regularity condition holds if

2. if n3 = Ω (nlog24 + ε  ) 

Example: Case3
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Iteration Method???
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Basics: Expand terms and look for pattern

T(1) = 1
T(2) = T(1) + T(1) + 2 = 1 + 1 + 2 = 4
T(3) = T(2) + T(1) + 3 = 4 + 1 + 3 = 8
T(4) = T(2) + T(2) + 4 = 4 + 4 + 4 = 12
T(5) = T(3) + T(2) + 5 = 8 + 4 + 5 = 17
. . .
T(8) = T(4) + T(4) + 8 = 12 + 12 + 8 = 32
. . .
T(16) = T(8) + T(8) + 16 = 32 + 32 + 16 = 80
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What is the pattern here ?

 To understand the pattern, let’s consider the ratios T(n)/n for powers of 2:

 This suggests,    T(n) = (log n + 1)*n, or T(n) = n log n + n   
which is              T(n) = Θ(n log n)

T(1) 1
T(2) 4
T(4) 12
T(8) 32
T(16) 80

T(1) / 1 1 0 + 1 log(1) + 1

T(2) /2 2 1 + 1 log(2) + 1

T(4) /4 3 2 + 1 log(4) + 1

T(8) / 8 4 3 + 1 log(8) + 1

T(16) / 16 5 4 + 1 log(16) + 1

T(n) / n log(n) + 1



Design & Analysis of Algorithms 27Asim Jalal

Another way!!!
 The iteration method turns the recurrence into a 

summation. Let’s expand the recurrence:
T(n) = 2T(n/2) + n

= 2(2T(n/4) + n/2) + n
= 4T(n/4) + n + n
= 4(2T(n/8) + n/4) + n + n
= 8T(n/8) + n + n + n                   
= 8(2T(n/16) + n/8) + n + n + n
= 16T(n/16) + n + n + n + n

…
The pattern is: T(n) = 2x T(n / 2x ) + x * n
Now, let ‘n’ is some power of 2, i.e.  n = 2k, we get

T(n) = 2k T(n / 2k ) + k * n
T(n) = 2k T(n / n ) + k * n
T(n) = 2k T(1) + k * n
T(n) = 2k (1) + k * n
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T(n) = 2k + k * n
T(n) = n + k * n
If n = 2k , then    k = log n
We get,
T(n) = n + log(n) * n
T(n) = n + n(log n)
or 

T(n) = Θ(n log n)
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