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Solving Recurrence
Using Merge-Sort as 

an Example
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Recursion Tree Method

 We can describe any recurrence in terms of 
a tree, where each expansion of the 
recurrence takes us one level deeper in the 
tree.

 We can then sum running time at each level.
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Sample/Example only
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Sample/Example only
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Recursion Tree Method

 As we derived earlier
Time to combine solutions be C(n)
 In divide and conquer, ‘a’ sub-problems takes 

aT(n/b) time. For merge Sort a =2 and b=2, 
therefore, Solving sub-problems takes 2T (n/2)

 c is the constant time to solve base case in 
merge sort
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 For the original problem, we have a cost of 
cn, plus the two sub-problems, each 
costing T (n/2):
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 For each of the size-n/2 subproblems, we 
have a cost of cn/2, plus two subproblems, 
each costing T (n/4):
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 Continue expanding until the problem 
sizes get down to 1:

log(n)+1

(log(n)+1 )   cn
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Basic concept is to find the costs involved at 
each level and add them all.

 Each level has cost cn.
 The top level has cost cn.
 The next level down has 2 sub-problems, each 

contributing cost cn/2.
 The next level has 4 sub-problems, each contributing 

cost cn/4.
 Each time we go down one level, the number of sub-

problems doubles but the cost per sub-problem halves
However total cost per each level stays the 

same.
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 If we observe the pattern, we see that 
there are log n + 1 levels (height is log n).

 Total cost is 
(log n +1 ) * cn  =  cn log n + cn

 Ignoring c’s and lower order terms, we get 
nlog(n)

 So the running time of MERGE SORT is 
 Θ(n log n)



Design & Analysis of Algorithms 12Asim Jalal

The Master Method
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The Master Method

 It is a “cookbook” for the solving many divide-
and-conquer recurrences of the form

 f(n) is D(n) + C(n) as given in the figure below.
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Example of f(n) in merge sort

 Recurrence relation of merge sort is

 f(n) = n, because in merge sort D(n) + C(n) = Θ(n), 
 Also in merge sort a = 2, b = 2
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Master Method: Three cases

 Master Method has three cases

You have to check which case your 
recurrence relation falls in and then apply 
the corresponding solution.

For Master Method, you need knowledge of 
asymptotic notations (Θ,O,Ω) and Log.
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Master Method: Case 1

 If

 Then
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Example of Case 1: 

 Suppose, we have: 
T (n) = 9T (n/3) + n.
 i.e.  a = 9, b = 3, f (n) = n
 Then check if

 f(n)  =  O(nlog39 – ε  )?
 n = O(n2- ε), as log39= 2
 for ε = 1, n = O(n), which is true

Therefore, according to Case 1 the solution is 
T= Θ(n2)



Design & Analysis of Algorithms 18Asim Jalal

Master Method: Case 2

 If 

 Then 



Example of Case 2 (Merge Sort case)

 For case 2 example, we consider MergeSort where 
we have, T(n) = 2T(n/2) + n

i.e. a=2, b=2, f(n) = n
 Now check if

f(n)  = Θ(nlog22) .
 n  = Θ(n) , which is true c1=1/2, c2=2, n0=1

• Therefore according to case 2 the solution is: 
T(n) = Θ(n logn)
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Master Method: Case 3

 If
and f (n) satisfies the regularity condition

for some constant c < 1 
and all sufficiently large n.

 Then

Regularity condition  always holds whenever f (n) = nk



 T(n) = 4T(n/2) + n3.
 a=4, b=2, f(n) = n3

 Here, check the following 2 things: 
1. Regularity condition holds if

2. if n3 = Ω (nlog24 + ε  ) 

Example: Case3
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Iteration Method???
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Basics: Expand terms and look for pattern

T(1) = 1
T(2) = T(1) + T(1) + 2 = 1 + 1 + 2 = 4
T(3) = T(2) + T(1) + 3 = 4 + 1 + 3 = 8
T(4) = T(2) + T(2) + 4 = 4 + 4 + 4 = 12
T(5) = T(3) + T(2) + 5 = 8 + 4 + 5 = 17
. . .
T(8) = T(4) + T(4) + 8 = 12 + 12 + 8 = 32
. . .
T(16) = T(8) + T(8) + 16 = 32 + 32 + 16 = 80
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What is the pattern here ?

 To understand the pattern, let’s consider the ratios T(n)/n for powers of 2:

 This suggests,    T(n) = (log n + 1)*n, or T(n) = n log n + n   
which is              T(n) = Θ(n log n)

T(1) 1
T(2) 4
T(4) 12
T(8) 32
T(16) 80

T(1) / 1 1 0 + 1 log(1) + 1

T(2) /2 2 1 + 1 log(2) + 1

T(4) /4 3 2 + 1 log(4) + 1

T(8) / 8 4 3 + 1 log(8) + 1

T(16) / 16 5 4 + 1 log(16) + 1

T(n) / n log(n) + 1
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Another way!!!
 The iteration method turns the recurrence into a 

summation. Let’s expand the recurrence:
T(n) = 2T(n/2) + n

= 2(2T(n/4) + n/2) + n
= 4T(n/4) + n + n
= 4(2T(n/8) + n/4) + n + n
= 8T(n/8) + n + n + n                   
= 8(2T(n/16) + n/8) + n + n + n
= 16T(n/16) + n + n + n + n

…
The pattern is: T(n) = 2x T(n / 2x ) + x * n
Now, let ‘n’ is some power of 2, i.e.  n = 2k, we get

T(n) = 2k T(n / 2k ) + k * n
T(n) = 2k T(n / n ) + k * n
T(n) = 2k T(1) + k * n
T(n) = 2k (1) + k * n
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T(n) = 2k + k * n
T(n) = n + k * n
If n = 2k , then    k = log n
We get,
T(n) = n + log(n) * n
T(n) = n + n(log n)
or 

T(n) = Θ(n log n)
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