
Dr. Syed Asim Jalal
Department of Computer Science

University of Peshawar

Data Structures and Algorithm Analysis

16

Design & Analysis of Algorithms 2Asim Jalal

Solving Recurrence
Using Merge-Sort as

an Example

Design & Analysis of Algorithms 3Asim Jalal

Recursion Tree Method

 We can describe any recurrence in terms of
a tree, where each expansion of the
recurrence takes us one level deeper in the
tree.

 We can then sum running time at each level.

Design & Analysis of Algorithms 4Asim Jalal

Sample/Example only

Design & Analysis of Algorithms 5Asim Jalal

Sample/Example only

Design & Analysis of Algorithms 6Asim Jalal

Recursion Tree Method

 As we derived earlier
Time to combine solutions be C(n)
 In divide and conquer, ‘a’ sub-problems takes

aT(n/b) time. For merge Sort a =2 and b=2,
therefore, Solving sub-problems takes 2T (n/2)

 c is the constant time to solve base case in
merge sort

Design & Analysis of Algorithms 7Asim Jalal

 For the original problem, we have a cost of
cn, plus the two sub-problems, each
costing T (n/2):

Design & Analysis of Algorithms 8Asim Jalal

 For each of the size-n/2 subproblems, we
have a cost of cn/2, plus two subproblems,
each costing T (n/4):

Design & Analysis of Algorithms 9Asim Jalal

 Continue expanding until the problem
sizes get down to 1:

log(n)+1

(log(n)+1) cn

Design & Analysis of Algorithms 10Asim Jalal

Basic concept is to find the costs involved at
each level and add them all.

 Each level has cost cn.
 The top level has cost cn.
 The next level down has 2 sub-problems, each

contributing cost cn/2.
 The next level has 4 sub-problems, each contributing

cost cn/4.
 Each time we go down one level, the number of sub-

problems doubles but the cost per sub-problem halves
However total cost per each level stays the

same.

Design & Analysis of Algorithms 11Asim Jalal

 If we observe the pattern, we see that
there are log n + 1 levels (height is log n).

 Total cost is
(log n +1) * cn = cn log n + cn

 Ignoring c’s and lower order terms, we get
nlog(n)

 So the running time of MERGE SORT is
 Θ(n log n)

Design & Analysis of Algorithms 12Asim Jalal

The Master Method

Design & Analysis of Algorithms 13Asim Jalal

The Master Method

 It is a “cookbook” for the solving many divide-
and-conquer recurrences of the form

 f(n) is D(n) + C(n) as given in the figure below.

Design & Analysis of Algorithms 14Asim Jalal

Example of f(n) in merge sort

 Recurrence relation of merge sort is

 f(n) = n, because in merge sort D(n) + C(n) = Θ(n),
 Also in merge sort a = 2, b = 2

Design & Analysis of Algorithms 15Asim Jalal

Master Method: Three cases

 Master Method has three cases

You have to check which case your
recurrence relation falls in and then apply
the corresponding solution.

For Master Method, you need knowledge of
asymptotic notations (Θ,O,Ω) and Log.

Design & Analysis of Algorithms 16Asim Jalal

Master Method: Case 1

 If

 Then

Design & Analysis of Algorithms 17Asim Jalal

Example of Case 1:

 Suppose, we have:
T (n) = 9T (n/3) + n.
 i.e. a = 9, b = 3, f (n) = n
 Then check if

 f(n) = O(nlog39 – ε)?
 n = O(n2- ε), as log39= 2
 for ε = 1, n = O(n), which is true

Therefore, according to Case 1 the solution is
T= Θ(n2)

Design & Analysis of Algorithms 18Asim Jalal

Master Method: Case 2

 If

 Then

Example of Case 2 (Merge Sort case)

 For case 2 example, we consider MergeSort where
we have, T(n) = 2T(n/2) + n

i.e. a=2, b=2, f(n) = n
 Now check if

f(n) = Θ(nlog22) .
 n = Θ(n) , which is true c1=1/2, c2=2, n0=1

• Therefore according to case 2 the solution is:
T(n) = Θ(n logn)

19

Design & Analysis of Algorithms 20Asim Jalal

Master Method: Case 3

 If
and f (n) satisfies the regularity condition

for some constant c < 1
and all sufficiently large n.

 Then

Regularity condition always holds whenever f (n) = nk

 T(n) = 4T(n/2) + n3.
 a=4, b=2, f(n) = n3

 Here, check the following 2 things:
1. Regularity condition holds if

2. if n3 = Ω (nlog24 + ε)

Example: Case3

21

Design & Analysis of Algorithms 22Asim Jalal

Design & Analysis of Algorithms 23Asim Jalal

Design & Analysis of Algorithms 24Asim Jalal

Iteration Method???

Design & Analysis of Algorithms 25Asim Jalal

Basics: Expand terms and look for pattern

T(1) = 1
T(2) = T(1) + T(1) + 2 = 1 + 1 + 2 = 4
T(3) = T(2) + T(1) + 3 = 4 + 1 + 3 = 8
T(4) = T(2) + T(2) + 4 = 4 + 4 + 4 = 12
T(5) = T(3) + T(2) + 5 = 8 + 4 + 5 = 17
. . .
T(8) = T(4) + T(4) + 8 = 12 + 12 + 8 = 32
. . .
T(16) = T(8) + T(8) + 16 = 32 + 32 + 16 = 80

Design & Analysis of Algorithms 26Asim Jalal

What is the pattern here ?

 To understand the pattern, let’s consider the ratios T(n)/n for powers of 2:

 This suggests, T(n) = (log n + 1)*n, or T(n) = n log n + n
which is T(n) = Θ(n log n)

T(1) 1
T(2) 4
T(4) 12
T(8) 32
T(16) 80

T(1) / 1 1 0 + 1 log(1) + 1

T(2) /2 2 1 + 1 log(2) + 1

T(4) /4 3 2 + 1 log(4) + 1

T(8) / 8 4 3 + 1 log(8) + 1

T(16) / 16 5 4 + 1 log(16) + 1

T(n) / n log(n) + 1

Design & Analysis of Algorithms 27Asim Jalal

Another way!!!
 The iteration method turns the recurrence into a

summation. Let’s expand the recurrence:
T(n) = 2T(n/2) + n

= 2(2T(n/4) + n/2) + n
= 4T(n/4) + n + n
= 4(2T(n/8) + n/4) + n + n
= 8T(n/8) + n + n + n
= 8(2T(n/16) + n/8) + n + n + n
= 16T(n/16) + n + n + n + n

…
The pattern is: T(n) = 2x T(n / 2x) + x * n
Now, let ‘n’ is some power of 2, i.e. n = 2k, we get

T(n) = 2k T(n / 2k) + k * n
T(n) = 2k T(n / n) + k * n
T(n) = 2k T(1) + k * n
T(n) = 2k (1) + k * n

Design & Analysis of Algorithms 28Asim Jalal

T(n) = 2k + k * n
T(n) = n + k * n
If n = 2k , then k = log n
We get,
T(n) = n + log(n) * n
T(n) = n + n(log n)
or

T(n) = Θ(n log n)

29

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Sample/Example only
	Sample/Example only
	Recursion Tree Method
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	The Master Method
	Example of f(n) in merge sort
	Master Method: Three cases
	Master Method: Case 1
	Example of Case 1:
	Master Method: Case 2
	Example of Case 2 (Merge Sort case)
	Master Method: Case 3
	Example: Case3
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29

