
Dr. Syed Asim Jalal
Department of Computer Science

University of Peshawar

Data Structures and Algorithm Analysis

16

Design & Analysis of Algorithms 2Asim Jalal

Solving Recurrence
Using Merge-Sort as

an Example

Design & Analysis of Algorithms 3Asim Jalal

Recursion Tree Method

 We can describe any recurrence in terms of
a tree, where each expansion of the
recurrence takes us one level deeper in the
tree.

 We can then sum running time at each level.

Design & Analysis of Algorithms 4Asim Jalal

Sample/Example only

Design & Analysis of Algorithms 5Asim Jalal

Sample/Example only

Design & Analysis of Algorithms 6Asim Jalal

Recursion Tree Method

 As we derived earlier
Time to combine solutions be C(n)
 In divide and conquer, ‘a’ sub-problems takes

aT(n/b) time. For merge Sort a =2 and b=2,
therefore, Solving sub-problems takes 2T (n/2)

 c is the constant time to solve base case in
merge sort

Design & Analysis of Algorithms 7Asim Jalal

 For the original problem, we have a cost of
cn, plus the two sub-problems, each
costing T (n/2):

Design & Analysis of Algorithms 8Asim Jalal

 For each of the size-n/2 subproblems, we
have a cost of cn/2, plus two subproblems,
each costing T (n/4):

Design & Analysis of Algorithms 9Asim Jalal

 Continue expanding until the problem
sizes get down to 1:

log(n)+1

(log(n)+1) cn

Design & Analysis of Algorithms 10Asim Jalal

Basic concept is to find the costs involved at
each level and add them all.

 Each level has cost cn.
 The top level has cost cn.
 The next level down has 2 sub-problems, each

contributing cost cn/2.
 The next level has 4 sub-problems, each contributing

cost cn/4.
 Each time we go down one level, the number of sub-

problems doubles but the cost per sub-problem halves
However total cost per each level stays the

same.

Design & Analysis of Algorithms 11Asim Jalal

 If we observe the pattern, we see that
there are log n + 1 levels (height is log n).

 Total cost is
(log n +1) * cn = cn log n + cn

 Ignoring c’s and lower order terms, we get
nlog(n)

 So the running time of MERGE SORT is
 Θ(n log n)

Design & Analysis of Algorithms 12Asim Jalal

The Master Method

Design & Analysis of Algorithms 13Asim Jalal

The Master Method

 It is a “cookbook” for the solving many divide-
and-conquer recurrences of the form

 f(n) is D(n) + C(n) as given in the figure below.

Design & Analysis of Algorithms 14Asim Jalal

Example of f(n) in merge sort

 Recurrence relation of merge sort is

 f(n) = n, because in merge sort D(n) + C(n) = Θ(n),
 Also in merge sort a = 2, b = 2

Design & Analysis of Algorithms 15Asim Jalal

Master Method: Three cases

 Master Method has three cases

You have to check which case your
recurrence relation falls in and then apply
the corresponding solution.

For Master Method, you need knowledge of
asymptotic notations (Θ,O,Ω) and Log.

Design & Analysis of Algorithms 16Asim Jalal

Master Method: Case 1

 If

 Then

Design & Analysis of Algorithms 17Asim Jalal

Example of Case 1:

 Suppose, we have:
T (n) = 9T (n/3) + n.
 i.e. a = 9, b = 3, f (n) = n
 Then check if

 f(n) = O(nlog39 – ε)?
 n = O(n2- ε), as log39= 2
 for ε = 1, n = O(n), which is true

Therefore, according to Case 1 the solution is
T= Θ(n2)

Design & Analysis of Algorithms 18Asim Jalal

Master Method: Case 2

 If

 Then

Example of Case 2 (Merge Sort case)

 For case 2 example, we consider MergeSort where
we have, T(n) = 2T(n/2) + n

i.e. a=2, b=2, f(n) = n
 Now check if

f(n) = Θ(nlog22) .
 n = Θ(n) , which is true c1=1/2, c2=2, n0=1

• Therefore according to case 2 the solution is:
T(n) = Θ(n logn)

19

Design & Analysis of Algorithms 20Asim Jalal

Master Method: Case 3

 If
and f (n) satisfies the regularity condition

for some constant c < 1
and all sufficiently large n.

 Then

Regularity condition always holds whenever f (n) = nk

 T(n) = 4T(n/2) + n3.
 a=4, b=2, f(n) = n3

 Here, check the following 2 things:
1. Regularity condition holds if

2. if n3 = Ω (nlog24 + ε)

Example: Case3

21

Design & Analysis of Algorithms 22Asim Jalal

Design & Analysis of Algorithms 23Asim Jalal

Design & Analysis of Algorithms 24Asim Jalal

Iteration Method???

Design & Analysis of Algorithms 25Asim Jalal

Basics: Expand terms and look for pattern

T(1) = 1
T(2) = T(1) + T(1) + 2 = 1 + 1 + 2 = 4
T(3) = T(2) + T(1) + 3 = 4 + 1 + 3 = 8
T(4) = T(2) + T(2) + 4 = 4 + 4 + 4 = 12
T(5) = T(3) + T(2) + 5 = 8 + 4 + 5 = 17
. . .
T(8) = T(4) + T(4) + 8 = 12 + 12 + 8 = 32
. . .
T(16) = T(8) + T(8) + 16 = 32 + 32 + 16 = 80

Design & Analysis of Algorithms 26Asim Jalal

What is the pattern here ?

 To understand the pattern, let’s consider the ratios T(n)/n for powers of 2:

 This suggests, T(n) = (log n + 1)*n, or T(n) = n log n + n
which is T(n) = Θ(n log n)

T(1) 1
T(2) 4
T(4) 12
T(8) 32
T(16) 80

T(1) / 1 1 0 + 1 log(1) + 1

T(2) /2 2 1 + 1 log(2) + 1

T(4) /4 3 2 + 1 log(4) + 1

T(8) / 8 4 3 + 1 log(8) + 1

T(16) / 16 5 4 + 1 log(16) + 1

T(n) / n log(n) + 1

Design & Analysis of Algorithms 27Asim Jalal

Another way!!!
 The iteration method turns the recurrence into a

summation. Let’s expand the recurrence:
T(n) = 2T(n/2) + n

= 2(2T(n/4) + n/2) + n
= 4T(n/4) + n + n
= 4(2T(n/8) + n/4) + n + n
= 8T(n/8) + n + n + n
= 8(2T(n/16) + n/8) + n + n + n
= 16T(n/16) + n + n + n + n

…
The pattern is: T(n) = 2x T(n / 2x) + x * n
Now, let ‘n’ is some power of 2, i.e. n = 2k, we get

T(n) = 2k T(n / 2k) + k * n
T(n) = 2k T(n / n) + k * n
T(n) = 2k T(1) + k * n
T(n) = 2k (1) + k * n

Design & Analysis of Algorithms 28Asim Jalal

T(n) = 2k + k * n
T(n) = n + k * n
If n = 2k , then k = log n
We get,
T(n) = n + log(n) * n
T(n) = n + n(log n)
or

T(n) = Θ(n log n)

29

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Sample/Example only
	Sample/Example only
	Recursion Tree Method
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	The Master Method
	Example of f(n) in merge sort
	Master Method: Three cases
	Master Method: Case 1
	Example of Case 1:
	Master Method: Case 2
	Example of Case 2 (Merge Sort case)
	Master Method: Case 3
	Example: Case3
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29

